
Introduction

Drylands occupy 41% of Earth’s land surface and are
home to more than 2 billion people – a third of the human

population in the year 2000 [1]. Drylands include all terres-
trial regions where water scarcity limits the production of
crops, forage, wood, and other ecosystem provisioning ser-
vices. Worldwide 10-20% of drylands are degraded, i.e.
suffer from the reduction or loss of the biological or eco-
nomic productivity, threatening the world’s poorest popula-
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Abstract

The loss of biological and economic productivity in the dryland regions hinders the prospects of reduc-

ing poverty. The method of vulnerability assessment has been broadly employed to evaluate the potential

impact of environmental change and pinpoint the future adaptations on regional or global levels, which could

help in the identification and development of coping strategies for dryland regions. The present study provides

a vulnerability assessment for the semiarid grasslands of the Xilingol, Mongolia Plateau – a typical dryland

area that has been suffering from land degradation for a long period. An exposure-sensitivity index was cal-

culated using Spatial Principal Component Analysis for 19 climate and anthropogenic indicators that had a

strong correlation with observed grassland degradation. This indicator was compared with an adaptive capac-

ity index, constructed using principal component analysis for 27 relevant variables from the aspects of loca-

tion advantage, economic level, resources, and social efficiency. The results show that the northeastern part of

Xilingol is least vulnerable due to more favorable and available natural resources, including high precipitation,

productive grassland, etc., and greater economic development. By contrast, the areas in the southwest, with

harsh environmental conditions and a poor socio-economic infrastructure, have the greatest vulnerability.

These regions are in dire need for targeted adaptation measures to further decline in human well-being.

Through analyzing the results of SPCA and PCA analysis, the entry points for vulnerability reduction were

distinguished and the pertinent suggestions were clearly brought forward from the aspects of reducing expo-

sure-sensitivity and improving adaptive capacity. 

Keywords: vulnerability, adaptive capacity, environmental change, grassland degradation

*e-mail: kangmy@bnu.edu.cn



tions and hindering prospects of reducing poverty [1].
Conflicts between economic development and environ-
mental conservation are exacerbated by expanding popula-
tions and increased food demands [2], and climate change
is likely to present further challenges to these already vul-
nerable regions [3]. The rural poor will suffer the most from
these changes and will require a range of coping strategies
to help them adapt to changing climates [4]. Vulnerability
assessment can form a useful framework for identifying
such strategies.

The concept of vulnerability was promoted in the
Intergovernmental Panel on Climate Change (IPCC)
Third Assessment Report [5], and has subsequently been
applied in environmental change science [6], sustainabili-
ty studies [7], and hazard and disaster research [8].
Vulnerability cannot be seen in isolation, and humans, as
users, actors and managers of the system are not external,
but integral elements of the coupled human environment
system [9]. A region’s vulnerability depends on its sus-
ceptibility to specific (e.g., drought) or integrated (e.g.,
drought and overgrazing in grassland) change, and its
ability to cope with these changes. Vulnerability is there-
fore a function of the exposure to change, a system’s sen-
sitivity to these change (i.e. the degree to which the sys-
tem is affected), and adaptive capacity, or ability to adjust
to these changes.

In practice, it is often difficult to separate exposure
and sensitivity, which are therefore often considered to be
one single factor, such as exposure-sensitivity [10], or
potential impact [6, 11]. In this paper, vulnerability is con-
ceptually defined as a function of exposure-sensitivity and
adaptive capacity. The analysis of exposure-sensitivity
identifies regions facing the greatest potential impacts,
where vulnerability can be reduced by lowering exposure

and (or) by changing a system in terms of reducing the
degree it is impacted through various direct and more
indirect aspects. By contrast, adaptive capacity pinpoints
regions where economic and human capitals are lowering
vulnerability, and poverty alleviation measures can reduce
vulnerability.

Many vulnerability assessments have focused on the
future prediction on national or continental scales [12,
13]. By contrast, regional studies remain scarce and there
is a need for the development of appropriate methods for
analysis [14]. Moreover, pointing out the entry point for
environmental management based on vulnerability
research with the knowledge of ecological process and
human adaptation could do more help in immediate envi-
ronmental management decisions than projecting future
vulnerability based on current or recent past analysis like
most current research. Therefore, this paper presents a
vulnerability assessment for the semiarid grasslands of
Xilingol in northern China, a region that has seen degra-
dation and marginalization for decades, and brings for-
ward a method to pinpoint the sources of vulnerability.
The methods presented here will provide a useful basis for
regional vulnerability assessment and help in improving
environmental management in the ecologically vulnerable
area.

Study Area

The Xilingol League1) extends between 41°35’-46°47’
N and 111º05’-120º01’E, in the Inner Mongolia Plateau,
China (Fig. 1). Xilingol covers an area of about 203,000
km2 and had a population of 909,500 at the end of 2000
[15]. Altitude ranges from 763 m to 1,750 m, declining
from the southeast to the northeast with a mosaic of hilly
mountains and low basins in the intermediate part. The area
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1) The administrative levels of league and banner are equivalent to prefecture and county, respectively. Hereafter, the subunits of Xilingol
League are collectively referred to as counties. 

Fig. 1. Location and administrative regions of Xilingol League.



is dominated by a continental middle temperate semi-arid
climate, with a mean annual temperature between 1ºC and
2ºC and the growing season stretching from April to
September. The rainfall temporally concentrates from July
to September and the annual precipitation varies between
around 400 mm in the southeast and lower than 200 mm in
the southwest, while the potential mean annual evapotran-
spiration declines from 2,700 mm in the west to 1,500 mm
in the southeast [16], which makes the west drier than the
east. The rolling grasslands are categorized into three types,
which follow a gradient from northeast to southwest: mead-
ow steppe, typical steppe, and desert steppe [17]. 

Grassland is the major land use type of Xilingol,
except the southeast, where farming and grazing co-exist
due to a more favorable climate. The livelihoods of 60%
of the Xilingol population depend on grazing and live-
stock products [18], which have been threatened by
decades of grassland degradation. Around half of Xilingol
grassland has been degraded to varying degrees between
1998 and 2003 [19]. In the past half century, the region
saw a dramatic change from pastoral nomadic lifestyles to
settled pastoralism, coinciding with rapid developments in
animal husbandry. The increased number and the reduced
mobility of herds make pasture broadly overgrazed and
vegetation intensively stamped. Furthermore, poor grass-
land farming practices result in severe soil loss, which has
greatly influenced livelihoods [20]. The ecological securi-
ty of Xilingol grassland is even more fragile when global
climate change is considered. While the projected temper-
ature increase may be favorable, there are large uncertain-
ties surrounding future fluctuations in precipitation [21].
The human disturbance in combination with the climate
change in Xilingol caused severe grassland degradation,
which is aggravated by shortage of scientific management
and intervention mechanism for environmental improve-
ment, or even fall into negative feedback under improper
environmental management policies and causing further
grassland deterioration. The current challenge of Xilingol
environmental management is lack of planned adaptation
strategies for vulnerability control on facing environmen-
tal change, while the biggest problem lies with the com-
plicated correlation of vulnerability elements and the
shortage of vulnerability research framework and practi-
cable evaluation method. The paper started from analyz-
ing the factors causing vulnerability, and committed to
constructing the regional vulnerability appraisal system,
which is expected to meet the need for environmental
management of Xilingol and similar environmentally vul-
nerable areas.

Materials and Methods

The human-environmental system of Xilingol consists
of a bio-geographical system and anthropogenic system
and their interaction. This paper treats human-environmen-
tal system vulnerability under several inseparable stressors,
including environmental changes leading by drought event,
precipitation fluctuation, insect and rodent attack, and

human management. And the human adaptive capacity is
considered as regional ability to cope with such environ-
mental changes and could be reflected and measured with
social and economic statistical data.

Vulnerability reflects a normal feature of a region under
a mean environmental condition that is greatly determined
by the dominant environmental change factors. For
Xilingol, precipitation is the most important determinant
factor of environmental change. The year 2000 was chosen
for the study because the precipitation of that year got close
to the normal status after a decline from 1998 (383.9 mm)
[22], and the precipitation of 2000 was quite near to the
mean level (197.3 mm) in the last ten years. 

This research attempts to quantify and map the vulner-
ability of the coupled human environmental system in
Xilingol and comprises three steps, summarized in Fig. 2: 
(1) Identifying the most important drivers of grassland

degradation and using these drivers to assess the com-
bined exposure-sensitivity index across the region. 

(2) Assessing differences in adaptive capacity across the
region by screening relevant indicators from the aspects
of location advantage, economic level, resources, and
social efficiency. 

(3) Combining these insights to determine differences in
vulnerability across Xilingol. These steps are described
in more detail in the following sections. 
All spatial analyses were carried out in ArcGIS (version

9.1), while non-spatial statistics were calculated using
SPSS (version 14).

Step 1: 
Assessing Exposure-Sensitivity 

to Grassland Degradation

Quantifying Grassland Degradation

A first requirement for assessing the drivers affecting
recent grassland degradation in Xilingol is a reliable spatial
dataset quantifying the degradation. Although grassland
degradation in Xilingol has been documented [15], such
datasets are not available. A new dataset was therefore cre-
ated using change in the normalized difference vegetation
index (NDVI) derived from advanced a very high radiome-
ter resolution (AVHRR) sensor onboard the National
Oceanographic and Atmospheric Administration (NOAA)
satellites. GIMMS AVHRR NDVI is broadly used in grass-
land monitoring on large scale [23], and its accuracy and
applicability was confirmed broadly on Xilingol grassland
classification and grass growth monitoring [24]. Change in
grassland productivity is computed by comparing the
NDVI data for 2000 with the undisturbed NDVI back-
ground. However, with a long history of human use, there
is hardly any grassland left undisturbed [25]. A proxy for
the undisturbed NDVI was therefore calculated based on
the assumption that undisturbed conditions are associated
with high NDVI values under the zonal climate condition.
Since the highest values are probably caused by extreme
precipitation events [26], the undisturbed NDVI proxy was
calculated by cutting off the highest NDVI value of each
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grid cell between 1981 and 2006 and averaging the next top
5 NDVI values. The grassland quality change for the year
2000 is then calculated by comparing the NDVI of 2000
with the undisturbed NDVI during the phase from 1981 to
2006. 

Identifying Potential Drivers 
of Recent Grassland Degradation

A list of potential climatic, topographic, and anthro-
pogenic drivers of grassland degradation was constructed
following a literature review [27, 28] and based on the best
available data sources. 

Plant growth is affected by weather conditions of not
only the growing season, but also the non-growing season,
since plant growth responds to rainfall with a certain time
lag [29]. We therefore define a growing year as the period
from the beginning of the non-growing season to the end of
the following growing season, (i.e. from the beginning of
October till the end of the following September). However,
due to the time lag, it is difficult to discriminate which indi-
cators and which periods are most critical for plant growth
and affect grassland degradation [23]. Eight periods (win-
ter, spring, summer, February and March, winter and
spring, non-growing season, growing season, and growth

year) relating to plant growth were therefore chosen for the
present analysis, for which monthly weather data (temper-
ature, precipitation, evapotranspiration, and wind speed
included) were extracted for 1999-2000. Data from 23
meteorological stations in and around Xilingol League
(Fig. 1) were spatially extrapolated using ordinary kriging
to produce a spatial dataset with 100 m resolution.
Furthermore, an aridity index was calculated following
Zhang et al. (Formula 1) [30]. 

(1)

...where K is the aridity index, tij̄ represents the mean air
temperature of meteorological station i in the month j, Nij is
the number of days in the month j.

Six topographic indictors were extracted from a 100m
digital elevation model (DEM) that could potentially influ-
ence the distribution of grassland degradation, including
altitude, slope degree, amplitude of landforms [31] (the dif-
ferences between the highest and lowest point within 5 km),
relative slope position [32], slope configuration [32], and
the transformation of aspect [33].
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Fig. 2. Flowchart of the vulnerability research.



Five indicators were identified to represent anthro-
pogenic influence on grassland degradation, including dis-
tance to road, distance to nearest settlement, distance to
nearest river (showing advantages of water accessibility),
and integrated influence of housing and grazing intensity.
The pastoralist settlement has resulted in sedentary grazing
where, according to local shepherds, grazing activity gen-
erally radiates no further than 5 km from settlements.
Simple indicators were therefore calculated for the distance
to the nearest settlement, river, and road. Integrated influ-
ence of housing is a weighted indicator combining settle-
ment size and distance to settlement. The grazing intensity
index reflects human influence on vegetation growth [34].
The construction of this index is explained in Appendix 1. 

Constructing the Exposure-Sensitivity Indicator

Spatial correlation analysis was used to identify the
variables that correlated most strongly with the observed
grassland change. The correlation coefficients were calcu-
lated based on the raster data of each indicator and the
recent change in grassland productivity. Indicators with a
higher correlation coefficient were considered as main dri-
ving forces of grassland degradation and used to construct
the exposure-sensitivity index based on spatial principal
components analysis (SPCA). Weak relations between
grassland degradation and driving forces is attributed to
several parameters, including regional heterogeneity, com-
plexity of grassland change, and other factors that are diffi-
cult to incorporate here. Exposure-sensitivity was defined
as the sum of the weighted principal components with an
accumulative variance greater than 90% (Formula 2).

(2)

...where m is the number of principal components, SPi is the
No. i spatial principal component, and ai demonstrates the
corresponding % variance explained. 

Step 2: 
Assessing Adaptive Capacity

Adaptive capacity is defined as the ability of the cou-
pled human environment system to cope with new or
changing circumstances [35]. Adaptive capacity therefore
helps to reduce the negative effects of the changing envi-
ronment or to utilize positive effects. The potential compo-
nents of adaptive capacity at the regional level include a lot
of indicators. Here, we developed the adaptive capacity
index to capture society’s ability of a region to cope with
changes and implement adaptation measures. Thus the vari-
ables of macro-economic, social development, public ser-
vices, human resources, and administrative efficiency were
selected as determinants of regional scale adaptive capaci-
ty. Especially the indicators of administrative efficiency
were used to reflect the reaction capability, responding
speed, and emergency handling ability of local govern-

ments. However, the regional governance in Xilingol
comes from the same regime, and the only difference lies in
the administrative level, so the two bigger cities of Xilinhot
and Erenhot have more preponderance in adaptation to
environmental change because of the higher administrative
level than the other counties. In the end 27 distinguishable
indicators were selected, which can be grouped in four cat-
egories: location, economic level, resources, and social effi-
ciency (Table 1). Unfortunately, several factors identified in
previous studies could not be included in the present study
due to data limitations (e.g. population structure, disease,
gender differentiation, and livelihood diversification).

The adaptive capacity index was calculated using PCA
to reduce the number of indicators and eliminate the
collinearity between variables. Adaptive capacity is calcu-
lated for each county, by summation of the weighted values
of the principal components with a total explained variance
over 90% (Formula 3).

(3)

...where j is the number of principal components, PCj is the
score of No. j principal component, while bj demonstrates
the corresponding % variance explained.

Step 3: 
Vulnerability Calculation and Mapping

Quantifying vulnerability is a great scientific challenge,
especially because of the relationships between exposure,
sensitivity, and adaptive capacity are not very well under-
stood [36, 37]. However, it is clear that high-exposure sen-
sitivity and low-adaptive capacity lead to high vulnerabili-
ty and vice versa. It is therefore useful to explore relative
rankings of the exposure-sensitivity and adaptive capacity
indices for the different counties in Xilingol.

Results

Assessing Exposure-Sensitivity 
of Recent Grassland Degradation

Through spatial correlation analysis, 19 of the 44 indica-
tors with higher correlation coefficients with grassland cover
change (Table 2) were enrolled into the SPCA to compose
exposure-sensitivity index, including 15 climatic factors and
4 anthropogenic factors (the distance to the nearest river is
treated as an anthropogenic factor for affecting the spatial
distribution of human activity). The SPCA shows that
91.3% of the total variance of these 19 indicators could be
represented by the first four components (Table 2). The cor-
relation coefficient matrix between the SPCA components
shows that the first component (SP1) is highly correlated
with transpiration and wind speed. The mean annual tran-
spiration of Xilingol is three times greater than precipitation,
resulting in a large water deficiency, which is a key factor
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Table 1. Factors and indicators used for calculating Xilingol adaptive capacity index.

Factor Indicator (unit) Adaptation mechanism Data source

L
oc

at
io

n 
ad

va
nt

ag
e Distance to the nearest railway

station (m) a)

Near rail station means great advantage for economic
growth and fast access to goods and material supplies for
emergent needs

Measured from traffic map of
Inner Mongolia

Soil erosion resistance (km2) b) Means the capability of local soil conditions for crop 
or forage production

China 1:4,000,000 Soil Database

Mean Precipitation of each
county (mm) 

High rainfall could support better grass growth and favor
regional adaptation. 

Extracted from Precipitation 
of Xilingol, 2000

E
co

no
m

ic
 le

ve
l

GDP per capita (Yuan pp)
Reflecting individual capability for recovery from 
environmental change attack.

(Xilingol Statistic Bureau 2001)

GDP (Yuan)
Region’s economic power determine capability for 
adaptation and recoverage

(Xilingol Statistic Bureau 2001)

Net income of rural resident
(Yuan)

Reflecting the capability of the more vulnerable human
group (rural peasants)

(Xilingol Statistic Bureau 2001)

Non-agricultural GDP
Percentage (%)

Showing the dependency of regional economics on 
agriculture: the higher of this indicator means the region
will be more vulnerable under environmental change

(Xilingol Statistic Bureau 2001)

GDP growth rate (%) Showing the prospirity of regional economy. (Xilingol Statistic Bureau 2001)

Infrastructure construction
investment (Yuan)

Infrastructure is a region’s base for adaptation, increase of
investment reflects the effort of perfection of regional 
infrastructure

(Xilingol Statistic Bureau 2001)

R
es

ou
rc

es
 

Grassland area (km2)
Grassland is the basic natural resource for pasture living,
more grassland means more income and high adaptive
capacity of household.

(Xilingol Statistic Bureau 2001)

Mean NDVI in each county
NDVI is used to reflect grassland quality, which is impor-
tant besides grassland area

NDVI of Xilingol in 2000

Grassland area Proportion in
each county (%)

Reflecting the dependency of a region’s agricultural 
economy on grassland

Calculation based on statistical
data

Livestock number by the end of
year (head)

Total livestock quantity reflects the financial asset 
of a region

(Xilingol Statistic Bureau 2001)

Medical staff quantity (person) Reflecting the accessible medical services of the region (Xilingol Statistic Bureau 2001)

Population size (person)
A bigger population needs more resources and will be less
flexible on adaptation

(Xilingol Statistic Bureau 2001)

Proportion of vacant land (%) c) Vacant land showing the potential of future land 
development

Desertification Map of China 
(1:4,000,000)

Meat yield (pork, beef, and 
cotton) (kg)

High meat yield or stock means more help in the human
adaptation for emergent need. 

(Xilingol Statistic Bureau 2001)

So
ci

al
 

ef
fi

ci
en

cy

Population density
(person/km2)

Area with higher population density will exert heavier 
burden on regional ecology and need more resources for
adaptation 

(Xilingol Statistic Bureau 2001)

Population growth rate (%)
High population growth means heavier pressure in the
future on grassland

(Xilingol Statistic Bureau 2001)

Non-agricultural population
proportion (%)

Non-agricultural people is human resources for regional
adaptation

(Xilingol Statistic Bureau 2001)

Student quantity at primary 
and secondary school

Showing the people who could get knowledge from school
education and tranfer the knowledge to others and benefit
their family for better adaptation 

(Xilingol Statistic Bureau 2001)

Mean household size (person) d)
Families with more people will be better able to develop
more strategies for adaptation under current resource 
distribution policies

(Xilingol Statistic Bureau 2001)

Livestock death rate (%)
Showing the science and technology level of animal 
husbandry

(Xilingol Statistic Bureau 2001)

Highway network density
(km/km2) 

Highway plays an important role in population, goods, and
material transportation.

Traffic map of Inner Mongolia,
2005
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Factor Indicator (unit) Adaptation mechanism Data source

So
ci

al
 

ef
fi

ci
en

cy

Electricity consumption per
GDP unit (kWh/Yuan) 

Low energy consumption level reflects more environmen-
tally friendly economic development and less pressure on
local environment

Calculation from (Xilingol
Statistic Bureau 2001)

Disposable income ratio
between urban and rural resi-
dents

Reflecting the income gap of each sub-region, the region
with less of an income gap are considered more socially
stable during adaptation 

(Xilingol Statistic Bureau 2001)

Administrative ability e)
The administrative ability reflect the reaction capability,
responding speed and emergency handling ability of local
governments.

Assignment based on expert
judgments

Table 1. Continued.

a) Average distance to the nearest rail station of all cells in a county 
b) Summarizing the weighted area proportions of each soil type. The soil type is quantified by assigning values based on the content of

organic matter and capacity to hold water and fertilizer. Grayzems soil: 8, chernozem soil: 6, chestnut soil: 4, brown soil: 2, bog soil:
7, grey meadow soil: 5, saline soil: 3, sandy soil: 1.

c) Including desertification land, salt and alkaline land, marshy land, etc.
d) Population number divided by household number
e) Xilinhot and Erenhot are assigned to 2 as two relative big cities; the remaining counties are 1 for small size

Table 2. Eigenvalues, contribution ratios, and the factor loading matrix of SPCA.

PCA component layer
Correlation
coefficient a) SP 1 SP 2 SP 3 SP 4

Eigenvalue - 0.204 0.097 0.034 0.022

% variance explained - 52.1 24.8 8.7 5.7

Cumulative % variance explained - 52.1 76.9 85.6 91.3

Mean air temperature of spring 0.382 0.726 0.131 0.601 -0.005

Mean air temperature of winter and spring 0.302 0.791 0.319 0.373 -0.212

Mean air temperature of non-growing season 0.230 0.814 0.386 0.096 -0.273

Mean air temperature of February and March 0.435 0.758 0.476 0.393 0.013

Cumulative precipitation of winter and spring 0.368 0.307 0.799 -0.368 0.307

Cumulative transpiration of February and March 0.360 0.971 0.158 0.035 -0.047

Cumulative transpiration of non-growing season 0.373 0.969 0.103 -0.116 -0.008

Cumulative transpiration of spring 0.210 0.900 -0.380 -0.142 -0.034

Cumulative transpiration of winter 0.349 0.623 0.654 0.267 -0.042

Cumulative transpiration of winter and spring 0.261 0.941 -0.284 -0.114 -0.010

Distance to road 0.228 -0.094 -0.460 0.413 0.680

Cumulative precipitation of summer 0.230 -0.215 0.859 -0.135 0.199

Distance to river 0.278 0.555 -0.625 0.270 0.326

Cumulative precipitation of spring 0.384 0.300 0.824 -0.320 0.307

Average wind speed of winter 0.354 0.938 -0.202 -0.191 0.117

Distance to nearest resident point 0.239 -0.004 -0.309 0.075 0.592

Average wind speed of spring 0.219 0.852 -0.288 -0.333 0.096

Grazing intensity -0.244 0.500 -0.311 -0.456 -0.192

Average wind speed of growth year 0.205 0.862 -0.313 -0.300 0.032

a) Indicators with correlation coefficient over 0.2 for grassland cover change at 0.1% level, n = 199042, SP – spatial principal component



shaping the local environment. SP2, SP3, and SP4 correlate
with precipitation (spring and summer), temperature
(spring), and human driving forces (distance to nearest set-
tlement and road), respectively. The exposure-sensitivity
index is calculated by Formula 2, and shown in Fig. 3A. It
increases in a radial pattern with a valley in the northwest
and the peak value south of Right Sonid.

Adaptive Capacity of Each County 

Four principal components had eigenvalues greater than
1.0, and explained more than 90% of the variation in the 27
input variables (Table 3). The correlation matrix shows that
the first principal component (PC1) is more correlated with
economic power, technology level, administration ability,
and infrastructure, all of which reflect socio-economic effi-
ciency. PC2 represents more information on economic dis-
parity between rural areas and urban areas, the natural pop-
ulation growth rate and livestock development level, which
could be labeled as rural economy and income disparity,
while the last two components have higher correlations
with human capital (PC3) and environment status (PC4). 

The adaptive capacity index (Fig. 3B) was calculated
using Formula 3. It shows that the counties with higher val-
ues of adaptive capacity are mainly located northeast of
Xilingol, which is dominated by the productive meadow
steppe and profitable stock breeding. By contrast, the coun-
ties with lower adaptive capacity are mainly located south of
Xilingol, the eastern part of which belongs to the farming-
pastoral zone with greater population density and fluctuating
climate and the western part in the desert steppe area, where
the rural livelihood is constrained by harsh climate and
sparse vegetation. The other part of the region located in the
typical steppe has intermediate adaptive capacity.

Vulnerability

Vulnerability is a function of exposure-sensitivity and
adaptive capacity, but their relationship remains largely

conceptual [38]. While this makes it difficult to construct
meaningful vulnerability indicators, it remains useful to
analyze exposure-sensitivity and adaptive capacity togeth-
er. A vulnerability map was constructed by classifying and
overlaying the spatial distribution of exposure-sensitivity
and adaptive capacity (Fig. 4). The Exposure-sensitivity
was classified into three types according to the breaking
points (0.98 and 1.45) of the histogram plot, while the adap-
tive capacity was used to group all counties into three types
by the scores (high >025, moderate: 0-0.25, low: <0). The
hue of green, yellow, and red demonstrate the increase of
exposure-sensitivity from low to high, and the saturation
from light to dark represents the increase of adaptive capac-
ity. Fig. 4 demonstrated that the counties in the southwest
of Xilingol are more vulnerable than those in the northeast-
ern part and should be given more attention in future
regional and ecosystem management. The distribution pat-
terns of vulnerability is in great accord with the differentia-
tion of precipitation and grassland, for the precipitation
decreased from the northeast to the southwest, while the
grassland typology changed from meadow-steppe in the
northeast and typical-steppe in the middle part to desert-
steppe in the southwest part of the study area.

Discussion

Drivers of Grassland Degradation

Correlation analysis, used to discriminate the exposure-
sensitivity indicators, forms a useful method to alleviate
subjectivity in selecting indicators for vulnerability assess-
ment [39]. However, the screening of driving factors
remains very difficult; in this paper we used correlation
coefficient to select the more relative indicators for further
analysis. We selected the method of interpolation to con-
struct spatial dataset of climatic date, and used the proxies
to reflect the human influences by expertise and experience
in the region. The drivers screening helped overcome the
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Fig. 3. Spatial distribution of exposure-sensitivity index (A) and adaptive capacity index of Xilingol (B). 



data gap in the research. However, refinement with field
investigation may improve its explanatory power, as shown
by Kawamura et al. [15].

Vulnerability Assessment Methods

The vulnerability assessment research is context-specif-
ic from the environmental, socio-economic, and institution-
al perspectives [40]. The PCA methods used in this study

offer an objective method to construct indices for exposure-
sensitivity and adaptive capacity [41, 42]. 

Vulnerability is a dynamic outcome of both environ-
mental and social processes occurring at multiple scales
[43]. Although location advantage indicators were includ-
ed in the adaptive capacity analysis to reflect accessibility
of outside resources, the present study reflected the cross-
scale relations (e.g. links to national governance, or local
communities) through macro level indicators from the
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Table 3. Eigenvalues, contribution, and correlation matrix of PCA.

Indicator PC 1 PC 2 PC 3 PC 4

Total Eigenvalue 8.411 7.960 5.415 2.498

% variance explained 31.2 29.5 20.1 9.3

Cumulative % variance explained 31.2 60.7 80.8 90.1

Distance to the nearest railway station -0.627* 0.604* -0.100 0.284

Soil erosion resistance -0.419 0.323 0.468 0.522

Precipitation -0.457 -0.44 0.704** -0.094

GDP per capita 0.559 0.806** -0.044 0.004

GDP 0.546 0.577* 0.586* -0.101

Net income of rural resident -0.024 0.891*** -0.218 0.333

Percentage of GDP of non-agricultural industry 0.946*** -0.043 0.064 -0.032

Growth rate of GDP 0.693* 0.547 0.250 -0.145

Area of grassland -0.400 0.793** -0.268 0.054

Quality of grassland -0.575 0.020 0.702* 0.242

Percentage of grassland over the total area -0.603* 0.491 0.029 -0.594*

Livestock number by the end of year -0.509 0.799** -0.086 0.142

Medical staff number 0.429 0.560 0.654* -0.163

Population size 0.056 -0.161 0.904*** 0.219

Infrastructure construction investment 0.564 0.602* 0.496 -0.179

Proportion of vacant land -0.394 0.050 -0.027 -0.713

Yield of meat (pig, cow, sheep, and goat) -0.474 0.806** 0.099 0.127

Population density 0.338 -0.606* 0.439 0.526

Natural growth rate of population 0.468 0.805** -0.154 0.029

Population of non-agricultural proportion 0.711** 0.305 -0.597* 0.120

Student population in primary and middle school 0.352 0.036 0.906*** 0.102

Household size -0.066 0.643* 0.654* -0.149

Livestock death rate 0.890*** 0.012 -0.376 0.135

Highway network density 0.862*** -0.299 -0.180 0.234

Energy consumption of unit GDP 0.453 -0.104 0.227 -0.719**

Ratio of disposable income between urban and rural residents 0.199 -0.832*** 0.332 -0.099

Administrative ability 0.95*** 0.204 0.011 0.062

***P < 0.001, **P < 0.01, *P < 0.05, n=10, PC – principal component



economic and social aspects. For this research focused on
the method for static vulnerability assessment, the
absence of temporal vulnerable research under certain
temporal contexts deserved further attention in future
research. 

This study has nevertheless demonstrated how straight-
forward methods can be used to quantify exposure-sensi-
tivity and adaptive capacity, which can then be used to
assess a region’s vulnerability. The results provide a basis
for developing strategies to alleviate the region’s vulnera-
bility, and also identify important directions for future
research (i.e. incorporating future climate change scenario
in the analysis). 

Entry Point for Reducing Vulnerability

The ultimate goal of a vulnerability study is to provide
insights that can be used to reduce vulnerability by identify-
ing strategies that could decrease exposure-sensitivity,
and/or improve adaptive capacity. The results of SPCA and
PCA offer an angle to pinpoint the source of exposure-sen-
sitivity and the advantages of adaptive capacity. From table
2 and table 3, the exposure-sensitivity and adaptive capaci-
ty are both mainly determined by the first two axes (SP1 and
SP2, PC1 and PC2). So it is clear that the evapor-transpira-
tion (SP1) and precipitation (SP2) play most important roles
in determining the exposure-sensitivity index, while eco-
nomic power and social efficiency (PC1) and rural economy
and income disparity (SP2) greatly contribute to the adap-
tive capacity index. Therefore, more attention should be
given to alleviating the influence of drought, and improve
the regional and household economy. To pinpoint the con-
crete entry points to reduce vulnerability, the scores of each
county about every component were divided into three cat-
egories by the quantity order, counties with high scores (top
4) would require particular attention (↑↑↑), while medium

values (next 4) still indicate areas which need improvement
(↑). In contrast, dimensions with low indicator values (bot-
tom 4) would need to be stabilized to secure benefits from
these relatively favorable conditions (●) (Table 4).

For the complexity of the human-environmental sys-
tem, it is unfeasible to distinguish the strategies for reduc-
ing exposure sensitivity from those for improving adaptive
capacity. So the combination of methods for reducing
exposure sensitivity and improving adaptive capacity is
needed for vulnerability reduction. For example, climate
variables play an important role in vulnerability by deter-
mining the exposure-sensitivity index. However, the
macro climate conditions could hardly be interfered with
by humans. It is therefore necessary to implement adapta-
tion strategies to reduce the dependency of human-envi-
ronmental systems on the stochastic climate system by
improving resistance and adaptive capacity. Such strate-
gies include enhancing income diversity by developing
activities outside the pastoral sector, establishing inten-
sively managed grassland in suitable areas to produce fod-
der, or importing crop straws as fodder, etc. In addition,
grazing intensity was identified as an important factor
affecting exposure-sensitivity. So better grazing regulation
is needed to control the stocking densities and its distribu-
tion for grassland protection.

Estimate of Accuracy

It is difficult to compose an explicit vulnerability index
by precisely quantifying the relationship between exposure-
sensitivity and adaptive capacity. Therefore, direct evalua-
tion of the accuracy of the research remains impossible, but
analyzing the qualitative relationship between exposure
sensitivity and adaptive capacity could reflect the accuracy
of the vulnerability research. As illustrated in Fig. 5, the
counties in the northeast (e.g., East Ujumuchin, West
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Fig. 4. Vulnerability regionalization of Xilingol league (ES – exposure-sensitivity; AC – adaptive capacity). 



Ujumchin, and Xilinhot) located in the upper-left of Fig. 5
have a high adaptive capacity and low exposure-sensitivity,
which means these regions are the least vulnerable. By con-
trast, the counties in desert meadow area (e.g., Erenhot) and
farming-pastoral zone (e.g., Taipusi and Duolun) occupy
the bottom-right, indicating greater vulnerability. Fig. 5 also
shows that in Xilingol most counties with higher values for
the exposure-sensitivity index have a low adaptive capaci-
ty, and vice versa. This is probably because the harsh envi-
ronmental conditions resulting in high exposure-sensitivity
cannot support the socio-economic infrastructure required
for a greater adaptive capacity. Additionally, the vulnerabil-
ity of Xilingol decreases from southwest to northeast,
which is opposite the trend of annual mean precipitation
(illustrated in study area section), which proved the fact that
the drier areas are more vulnerable than the other areas.

Conclusions 

This paper demonstrated a straightforward approach to
regional vulnerability assessment that can be readily
applied to other dryland regions. The analysis of exposure-
sensitivity identifies regions facing the greatest potential
impacts, where vulnerability can be reduced by lowering
exposure. By contrast, adaptive capacity pinpoints regions
where economic and human capitals are lowering vulnera-
bility and poverty alleviation measures can reduce vulnera-
bility.

The results show that northeastern Xilingol is least
vulnerable due to a more favorable resource base and
greater economic development (e.g., Xilingol, West
Ujumchin, and East Ujumchin). By contrast, the counties
in the southwest, with harsh environmental conditions and
a poor socio-economic infrastructure, have the greatest
vulnerability. These regions are in the direst need for tar-
geted adaptation measures to a further decline in human
well-being.
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Table 4. Entry points for vulnerability reduction according to the indicator values at the SPCA and PCA components.
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East Ujumchin 0.78 ● ↑ ↑ ↑ 0.59 ● ● ↑ ●

West Ujumchin 1 ● ↑ ↑↑↑ ● 0.28 ● ↑ ↑↑↑ ●

Abaga 0.76 ● ● ↑ ↑ 0.19 ● ↑↑↑ ● ↑

Left Sonid 1.15 ↑↑↑ ● ↑ ↑↑↑ 0.13 ● ↑↑↑ ● ↑↑↑

Xilinhot 0.76 ● ● ● ● 0.92 ↑ ● ↑ ↑

Erenhot 1.57 ↑↑↑ ● ↑↑↑ ● 0.24 ↑ ↑↑↑ ● ●

Right Sonid 1.74 ↑↑↑ ↑ ↑ ● 0.01 ↑ ● ● ↑↑↑

Zhenglan 1.11 ↑ ↑↑↑ ● ↑↑↑ -0.45 ↑↑↑ ↑ ↑ ↑↑↑

Zhengxiangbai 1.22 ↑ ↑ ● ↑↑↑ -0.62 ↑↑↑ ↑ ↑↑↑ ↑↑↑

Xianghuang 1.52 ↑↑↑ ↑↑↑ ● ↑↑↑ -0.39 ↑ ↑↑↑ ↑ ↑

Duolun 1.33 ↑ ↑↑↑ ↑↑↑ ↑ -0.58 ↑↑↑ ↑ ↑↑↑ ↑

Taipusi 1.51 ↑ ↑↑↑ ↑↑↑ ↑ -0.32 ↑↑↑ ● ↑↑↑ ●

↑↑↑ – particular attention needed; ↑ – improvement needed; ● – stabilization needed

Fig. 5. Relationship between exposure sensitivity and adaptive
capacity.

Exposure Sensitivity

A
da

pt
iv

e 
C

ap
ac

it
y



Acknowledgements

The authors thank the National Natural Science
Foundation of China (NSFC 41271059) and Beijing
Planning Office of Philosophy and Social Science
(PXM2013_014207_000065) for financial support. The
authors also thank the Environment & Ecology Scientific
Data Center of Western China (NSFC), the Climate
Centre of China Meteorological Administration and the
National Geomatics Center of China for supplying
research data.

References

1. Millennium Ecosystem Assessment. Ecosystems and human
well-being: Desertification synthesis, World Resources
Institute: Washington, DC, 2005.

2. CLARKE J.,NOIN D. Eds. Population and Environment in
Arid Regions. UNESCO: Paris, 1998.

3. IPCC. Climate change 2007:Impacts, adaptation and vulner-
ability. Cambridge: Cambridge University Press, 2007.

4. THOMAS R.J. Opportunities to reduce the vulnerability of
dryland farmers in central and west asia and north africa to
climate change. Agr. Ecosyst. Environ., 126, (1-2), 36,
2008.

5. IPCC The third assessment report of the intergovernmental
panel on climate change. London: Cambridge University
Press, 2001.

6. METZGER M., SCHR TER D., LEEMANS R., CRAMER
W. A spatially explicit and quantitative vulnerability assess-
ment of ecosystem service change in Europe. Regional
Environmental Change, 8, (3), 91, 2008.

7. LUERS A.L. The surface of vulnerability: An analytical
framework for examining environmental change. Global
Environ. Chang. Part A, 15, (3), 214, 2005.

8. CHULUUNDORJ O. A multi-level study of vulnerability of
mongolia pastoralists to natural hazards and its conse-
quences on individual and household well-being, University
of Colorado: Denver, 2006.

9. SCHOLZ R.W., BINDER C.B. Principles of human-envi-
ronment systems (hes) research, in iEMSs 2004
International Congress: “Complexity and Integrated
Resources Management,” S.S. PAHL, C. JAKEMAN and S.
TAKAHASHI, Editors International Environmental
Modeling and Software Society: University of Osnabrück,
Germany. 791, 2004.

10. FORD J.D., SMIT B., WANDEL J., MACDONALD J.
Vulnerability to climate change in Igloolik, Nunavut: What
we can learn from the past and present. Polar Record, 42,
(2), 127, 2006.

11. HENDRIKS I.E., DUARTE C.M., ÁLVAREZ M.
Vulnerability of marine biodiversity to ocean acidification:
A meta-analysis. Estuar. Coast. Shelf S., 86, (2), 157,
2010.

12. ADGER W.N., BROOKS N., BENTHAM G., AGNEW M.,
ERIKSEN S. New indicators of vulnerability and adaptive
capacity, Technical Report 7, Tyndall Centre for Climate
Change Research, University of East Anglia: Norwich,
2004.

13. SCHRÖTER D., CRAMER W., LEEMANS R., PREN-
TICE C., ARA JO M.B., ARNELL N.W., BONDEAU A.,
BUGMANN H., CARTER T.R., GRACIA C.A., DE LA
VEGA-LEINERT A.C., ERHARD M., EWERT F., GLEN-
DINING M., HOUSE J.I., KANKAANP S., KLEIN R.J.T.,
LAVOREL S., LINDNER M., METZGER M.J., MEYER
J., MITCHELL T.D., REGINSTER I., ROUNSEVELL M.,
SABAT S., SITCH S., SMITH B., SMITH J., SMITH P.,
SYKES M.T., THONICKE K., THUILLER W., TUCK G.,
ZAEHLE S.N., ZIERL B.R. Ecosystem service supply and
vulnerability to global change in Europe. Science, 310, (25),
1333, 2005.

14. LI A., WANG A., LIANG S., ZHOU W. Eco-environmental
vulnerability evaluation in mountainous region using remote
sensing and GIS – a case study in the upper reaches of min-
jiang river, china. Ecol. Model., 192, (1-2), 175, 2006.

15. KAWAMURA K., AKIYAMA T., YOKOTA H.-O., TSUT-
SUMI M., YASUDA T., WATANABE O., WANG S.
Quantifying grazing intensities using geographic informa-
tion systems and satellite remote sensing in the Xilingol
steppe region, inner Mongolia, China. Agr. Ecosyst.
Environ., 107, (1), 83, 2005.

16. CHEN Y.H., LI X.B., SHI P.J., DOU W., LI X. Intra-annual
vegetation change characteristics in the ndvi-ts space:
Application to farming-pastoral zone in north China. Acta
Bot. Sin., 45, (10), 1139, 2003.

17. COMPILING GROUP OF THE VEGETATION OF
CHINA Ed. The vegetation of China. Science Press: Beijing,
1980 [In Chinese].

18. XILINGOL STATISTIC BUREAU Statistical yearbook of
xilingol league 2000: Xilinhot, 2001 [In Chinese].

1784 Xu G., et al. 

Appendix 1. 

Indices for anthropogenic influence 

on grassland degradation

Grazing intensity index

Natural grassland productivity is mainly determined
by hydrothermal status, while the real grassland status is
controlled by natural condition and grazing activities.
Thus the difference between potential and observed vege-
tation therefore represent the grazing effect. Here, the
vegetation status is measured by NDVI and the grazing
intensity index is calculated by subtracting the observed
NDVI from the potential NDVI (Formula A2). 

The aridity index K [30] is used to calculate the poten-
tial NDVI. The relationship between K and potential
NDVI was determined experimentally, using 167 ran-
domly selected points that are further than 5 km from set-
tlements, and therefore less disturbed by grazing. The K
value of each point is extracted from the grid data, and the
relationship is demonstrated by Formula A3.

GI = NDVIp – NDVI (A2)

NDVIp = 0.4032 × K-0.2612 (A3)

...where GI is grazing intensity, NDVIp and NDVI repre-
sent the potential and the observed NDVI separately, K
represents the aridity index.
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